6 $\alpha, 7 \alpha$-Oxido-17 α-acetoxy-A-norpregn-3-ene-2,20-dione (21), $\cdots-$ A mixture of $15(320 \mathrm{mg})$ and m-chloroperbenzoic acid (610 $\mathrm{mg}) \mathrm{in}_{11} \mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$ was left. at room tempenature for 66 hr . The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed (satumated $\mathrm{NaIlCl} \mathrm{a}_{1}, 5 ;$ $\mathrm{Na}_{2} \mathrm{SO}_{3}, \mathrm{~S}_{6}$ salt solution), dried, and evaporated. Crystallization of the residue from ether-CIICl ${ }_{3}$ gave 21 (1901 mg , mp $202-204^{\circ}$). The analytical sample was prepared by recrostallization from acetone-hexane; mp 232-233. $\left.\quad[\alpha]^{31} 1\right)-13^{\circ}$ (EtOlI); $\lambda 5.78,5.86$, and $6.13 \mu ; \lambda \cdot 3.5 \ln \mu(\epsilon 11, \overline{7}) 0) ; \tau(1.25$

 3.78 ($\mathrm{s}, \mathrm{B} \mathrm{H} \mathrm{H}$).
 70.97; HI, 7.37.

6 $\alpha, 7 \alpha$-Oxido-17 α-ethynyl-A-norandrost-3-en-17 β-ol-2-one (22).--A mixture of $17(1.8 \mathrm{~g})$ and m-chloroperbenzoic acid $(3.1 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{ml})$ was left at room tenperature for 65 lin. The CH2Cl. solution wis washed (saturated NallCO: © ${ }_{4} \mathrm{Na}_{2} \mathrm{SO}_{3}, \mathrm{~S}_{4}$, salt solution), dried, and evaporated. Plate
chromanograply of the residue on nentral alumina betivity V; msing CHCl Cl_{3} as the leveloping solvent gave a majom bamil de.
 lion, and crvatallization from ethyl actate afforled 22 (3021 ng, mp $222-\cdots 4^{\circ}$). The analytical sample was prepared by recre.

 (s, :3-11):
 (. 76.4% 11, $\overline{6} . \mathrm{B}$.

Acknowledgment.- We wish to thank Mr_{r}. E. Yiacas and Dr. L. Lerner for the biological results, Mr. J. Alicino and hisstaff for analytical results, and 1)r. A. I. Cohen for the nmr data.

The Synthesis of Hydroxylamine Derivatives Possessing Hypocholesteremic Activity

Wallace Laboralories, Division of Cacter-Hallace, Inc.. Cunbury. Iew Jerseg

Receled March 3, 1stri

Abstract

The preparation of a variety of O-aralkyl and O, N-diamaybladroxymame empomads is reported. These include, in addition to the ammes, acy- and aroyhydroxamates, carbalkony-and arbayloxylydrexamates, and various urea compomds derived from the hydroxylanines. Dany of these compomde show significant lypocholesterennc activity upon oral administration to mats. Aralkytation of acetolpodroxamie acid is shown to lead to the O, N-diaralkylated rather than O,O'-diamakyated reaction prodnct. (), N substionmon (III) is therefore assumed for the series of analogots acy- and aroybydroxmmater deseribed.

The biological and pharmacological properties of a large variety of hydroxylamine derivatives have been evaluated in the past. Discovery of the antibacterind properties of canavanine ${ }^{1}$ and of cycloserine ${ }^{2}$ stimulated the search for antinucrobials containing the oxyamino group. Hydroxylamine derivatives have been reported to possess antibacterial, herbicidal, enzyme iuhibiting, and antitumor activities and to have anticonvulsant. analgesic, antirheumatic, diuretic, local anesthetic, hypoglycemic, and CAS stimulating and depressing properties. These reported activities are appareutly not necessarily dependent on the hydroxylamine moicty since the corresponding amino analogs frequently exhibit similar activities. In other cases the hydroxylamine function seems to be essential for biological activity. In many investigations these aminooxy compounds have been found to bear little, if any, biological resemblance to their amine counterparts. ${ }^{3}$
We now wish to report the preparation and the results of preliminary pharmacological evaluation of a number of hydroxylamine derivatives that significantly lower the serum cholesterol concontration of warm blooded animals. ${ }^{4}$ These compounds consist of aralkoxyamines ($\mathrm{I}, \mathrm{X}=$ aralkyt $\mathrm{Y}=\mathrm{Z}=\mathrm{H}$), N -aralkyaralkoxyamines ($\mathrm{I}, \mathrm{X}=\mathrm{Y}=$ aralkyl; $\mathrm{Z}=\mathrm{H}$), a

[^0]number of the corresponding iney- and aroylhydroxit mates ($\mathrm{I}, \mathrm{Z}=\mathrm{RCO}$), carbalkoxy- and carbary loxyh $r-$ droxamates ($\mathrm{I}, Z=\mathrm{ROCO}$), and urea derivetives (I , $\mathrm{Z}=\mathrm{CONH}_{2}, \mathrm{CONHR}$. CONHCOR). Also included in this study are several related compomids of these types having aryloxyalkyl rather than aralkyl substitutioll.

Y			
SON		$\mathrm{RC}=\cdots\left(\mathrm{OR}_{1}\right.$	1200N
	Z	()R,	
I		11	111

The preparation of thase compounds followed in general well-established routes of synthesis (Chart I). Aralkylation of N-hydroxyurethan A with the appropriate aralkyl halides ${ }^{33,3.5}$ fumished good to excellent yields of the aralkyl carbethoryhydroxamates B or of the corresponding aralkyl N-analkylearbethoxyhydroxamates C depending on the ratio of the reactants (reactions 1 and 2). These aralkylations were usually performed in anlydrous ethanol using sodium ethoxide or KOH as acid acceptors. The reactions were exothermic when substituted benzyl bromides were entployed, and it was usually possible to obtain good con-

[^1]Table I
Aralkyl Carbalkoxy- and Carbaryloxyhydroxamates

					Mp or hp			---Calcd, \%---Found, \% -						Activity ${ }^{\text {a }}$,
No.	X	A	R	Method	(mm) , ${ }^{\circ} \mathrm{C}$	$n^{25} \mathrm{D}$	Formula	C	H	N	C	H	N	
1	H	CH_{2}	Methyl	5	109 (0.2)	1.3215	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{3}$	59.66	6.12	7.73	59.86	6.09	7.90	
2^{c}	H	CH_{2}	Etilyl	1	$111(0.3)$	1.5125	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$	61.53	6.71	7.18	61.79	6.55	6.97	$+{ }^{d}$
3	H	CH_{2}	Butyl	5	123 (0.8)	1.5023	$\mathrm{C}_{12} \mathrm{H}_{1}-\mathrm{NO}_{3}$	64.55	7.68	6.28	64.27	7.75	6.58	+
4	H	CH_{2}	Isobutyl	5	37-38		$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}$	64.55	7.68	6.28	64.94	8.01	6.27	+
5	H	CH_{2}	Hexyl	5	35		$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}$	66.90	8.42	5.58	66.81	8.40	5.89	-
6	H	CH_{2}	Phenyl	5	45		$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$	69.12	5.39	5.76	69.22	5.50	5.85	T
7	H	CH_{2}	Benzyl	1	65-68		$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3}$	70.02	5.88	5.44	70.10	5.90	5.49	-
8	H	$\left(\mathrm{CH}_{4}\right)_{2}$	Ethyl	1	130 (0.2)	1.5104	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$	63.14	7.23	6.70	63.18	6.95	6.82	-
9^{e}	H	$\left(\mathrm{CH}_{2}\right)_{3}$	Ethyl	1	138 (0.2)	1.5070	$\mathrm{C}_{12} \mathrm{H}_{1} \mathrm{NO}_{3}$	64.55	7.68	6.28	64.37	7.20	6.46	-
10	$m \cdot \mathrm{CH}_{8}$	CH_{2}	Ethiyl	1	103 (0.1)	1.5138	$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{3}$	63.14	7.23	6.70	63.47	7.39	6.83	T
11	$p-\mathrm{CH}_{3}$	CH_{4}	Ethyl	1	45-47		$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$	63.14	7.23	6.70	63.31	7.09	6.76	+ +
12	$p-\mathrm{CH}_{3}$	$\left(\mathrm{CH}_{2}\right)_{3}$	Phenyl	5	72-i4		$\mathrm{C}_{4} 7 \mathrm{H}_{19} \mathrm{NO}_{3}$	71.56	6.71	4.91	71.65	6.48	5.07	-
13	$o-\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{2}	Ethyl	1	120 (0.1)	1.3105	$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}$	64.55	7.68	6.28	64.72	7.66	6.35	T
14	3,4-($\left.\mathrm{CH}_{3}\right)_{2}$	CH_{2}	Ethyl	1	142 (0.1)	1.5152	$\mathrm{C}_{12} \mathrm{H}_{1}=\mathrm{N} \mathrm{O}_{3}$	64.55	7.68	6.28	64.42	7.48	6.53	-
15^{j}	iso-Pr	CH_{2}	Ethyl	1	133 (0.1)	1.5057	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}$	65.80	8.07	5.90	65.84	8.10	5.96	-
16	$0 . \mathrm{OCH}_{3}$	CH_{2}	Etliyl	1	127 (0.1)	1.5221	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4}$	58.65	6.72	6.22	58.32	6.17	6.33	-
17^{j}	$m-\mathrm{OCH}_{3}$	CH:	Ethyl	1	136 (0.2)	1.5186	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4}$	58.65	6.72	6.22	58.31	6.32	6.00	-
18	$m-\mathrm{CF}_{3}$	CH:	Ethyl	1	78-80	. . .	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{3}$	50.19	4.60	5.32	50.05	4.69	5.21	$+^{8}$
19	$o \cdot \mathrm{Cl}$	CH_{2}	Ethyl	1	40-42	. .	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{3}$	52.39	5.27	6.10	52.30	5.38	6.33	
20^{h}	$p-\mathrm{Cl}$	CH.	Ethyl	1	83-84	\cdots	$\mathrm{C}_{64} \mathrm{H}_{12} \mathrm{ClNO}_{3}$	52.59	5.27	6.10	52.44	5.51	6.18	+
21^{h}	$3,4 \cdot \mathrm{Cl}_{2}$	CH_{2}	Ethyl	1	80-81		$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{Cl}_{4} \mathrm{NO}_{3}$	45.48	4.20	5.30	45.40	4.29	5.22	
22	$3.4-\mathrm{Cl}_{2}$	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)$	Ethyl	1	74-75		$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{NO}_{3}$	47.50	4.71	5.04	47.47	4.55	5.01	
23	$p-\mathrm{NO}_{2}$	CH_{4}	Ethyl	1	82		$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6}$	50.00	5.04	11.66	50.17	4.92	11.50	+
24	$p-\mathrm{NH}_{2}$	CH_{2}	Ethyl	i	133, dec	' '.	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}_{1} \mathrm{O}_{3}{ }^{3}$	48.68	6.12	11.36	48.53	5.87	11.59	-

${ }^{a}$ The activity is measured as a reduction of serum cholesterol relative to control animals on the same diet without drug: $<25 \%$ reduction $=-, 25-50 \%$ reduction $=+, 51-75 \%$ reduction $=++$, and 76% or greater reduction $=+++.{ }^{b}$ At 0.5% diet level. ${ }^{c}$ A. Hantzsch and A. Sauer, Ann. Chem., 299, 67 (1897). dAt 1.0% diet level. e See ref 7 c . ${ }^{f}$ See ref 3a. ${ }^{\text {a At } 0.25 \% ~ d i e t ~ l e v e l, ~}$ ${ }^{h}$ A. F. McKay, D. L. Garmaise, G. Y. Paris, and S. Gelblum, Can. J. Chem., 38, 343 (1960). ${ }^{i}$ See Exper'mental Section. ${ }^{i}$ Hydrochloride.

versions at room temperature. Benzyl chlorides and higher aralkyl halides usually required several hours of reflux for completion of the reaction. Small quantities of the corresponding ethyl ethers were always obtained as by-products, these ethers being formed by aralkylation of the alcoholic solvent. These lower boiling ethers could be readily separated from the reaction mixture by distillation. A 1:1 molar ratio of aralkylating agent to N-hydroxyurethan furnished good yields of the O-aralkylated products of type B with little of the O,N-diaralkylated compound of type C. Increasing amounts of C were obtained by increasing this ratio and C was formed almost exclusively when the ratio of aralkylating agent to N-hydroxyurethan was 2:1. This procedure is preferred when carbethoxyhydroxamate compounds containing two identical aralkyl groups are desired. A molar ratio of 1.5:1 was usually employed when both B and C were desired. The products could then be separated either by fractional distillation or, following the procedure of Jones, ${ }^{6}$ by extracting the O -aralkylated product into aqueous alkali, the

O,N-diaralkyl derivative remaining in the organic layer.
The majority of the carbethoxyhydroxamates so prepared are high-boiling colorless oils. They were purified by vacuum distillation except in a few cases where molecular distillation was employed when extensive decomposition occurred using conventional high-vacuum distillation apparatus. The physical constants and the analytical data for the aralkyl carbethoxyhydroxamates and aralkyl N-aralkylcarbethoxyhydroxamates are listed in Tables I and II, respectively. Similar data for a smaller number of aryloxyalkyl derivatives are included in Tables III and IV.

The hydrolysis of carbethoxyhydroxamates of types B and C with alkali ${ }^{3 \mathrm{a}, 5.6}$ produced excellent yields of the corresponding aralkoxyamines of type D or of N aralkylaralkoxyamines of type E (reactions 3 and 4). It was generally unnecessary to isolate the intermediate carbethoxyhydroxamates when these hydroxylamines were the desired compounds. The reaction mixture from reactions 1 or 2 was treated with aqueous alkali and the hydroxylamines were obtained directly. These weakly basic compounds were usually high-boiling colorless liquids which can be purified by vacuum distillation or by conversion to the hydrochlorides which can be readily crystallized from alcohol. The physical constants and the analytical data for these aralkylated hydroxylamines are listed in Tables V and VI. Tables III and IV include a smaller number of the corresponding aryloxyalkylated hydroxylamines.
It has been reported by a number of investigators that certain of the aralkoxyamine hydrochlorides of this general type decompose on standing to HCl and the

Armbkyl. N-Arndeylcarbalkoxy- and carbarylonyhydroxamates

Nu.	X	A	Y	13	R	Metliod	Mp or bp (mm). ${ }^{\circ} \mathrm{C}$	n^{25} D	Formula	$---$	Calcd. 11	$-$	$-$	Found. ${ }^{1}$		Activily ${ }^{\text {a }}$
47^{6}	H	CH_{2}	II	CII_{2}	Ethyl	2	145 (0.3)	1.540\%	$\mathrm{C}_{17} \mathrm{HI}_{19} \mathrm{NO}_{3}$	71.55	6.71	4.91	71.37	6.78	5.14	$t+{ }^{\text {c }}$
48	II	CH_{2}	H	Clim_{2}	β-Methoxyethyl	6	17:) (0.3)	1.55362	$\mathrm{C}_{15} \mathrm{IH}_{22} \mathrm{NO}_{4}$	68.55	6.71	4.44	68.93;	6.68	4.50	+ +
49	II	CH_{2}	H	CH_{2}	γ Methoxypropyl	©	17S(0.1)	1.5308	$\left.\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}\right)_{*}$	69.28	7.04	4.25	69.50	7.20	4.20	-
50	II	CH_{2}	II	CH_{2}	Isobutyl	6	144 (0.1)	1.5281	$\mathrm{C}_{19} \mathrm{I}_{22} \mathrm{NO}_{3}$	72.82	7.40	4.47	73.11	7.07	4.72	+ +
51	H	CH_{2}	II	CH_{2}	Phenyl	6	59-61		$\mathrm{C}_{21} \mathrm{HI}_{19} \mathrm{NO}_{3}$	75.65	5.72	4.21	75.62	5.84	4.11	+ +
52	II	CHI_{2}	II	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)$	Ethyi	9	135 (0.1)	1.5362	$\mathrm{C}_{68} \mathrm{HI}_{21} \mathrm{NO}_{3}$	72.22	7.07	4.68	72.36	7.04	4.56	-
53	II	$\mathrm{CH}\left(\mathrm{CHI}_{3}\right)$	II	CH_{2}	Ethyl	10	132 (0.1)	1.535 .5	$\left.\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}\right)_{3}$	72.22	7.07	4.65	72.31	7.07	4.59	+ +
54	II	CH_{2}	II	$\left(\mathrm{CH}_{2}\right)_{2}$	Ethyl	9	146 (0.1)	1.5354	$\mathrm{C}_{18} \mathrm{II}_{21} \mathrm{NO}_{3}$	72.22	7.07	4.68	72.13	7.11	4.71	+ +
5.5	H	$\left(\mathrm{CH}_{2}\right)_{3}$	II	ClH_{2}	Ethyl	$!$	$15: 3$ (0.1)	1.5326	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO} \mathrm{O}_{3}$	72.82	7.40	4.47	73.16	7.40	4.59	$t+$
56	H	CH_{2}	H	$\left(\mathrm{CH}_{2}\right)_{\mathrm{a}}$	Ethyl	9	157 (0.1)	1.5324	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3}$	72.82	7.40	4.47	72.36	6.96	4.80	+ + +
57	II	$\left(\mathrm{CH}_{2}\right)_{3}$	H	$\left(\mathrm{CH}_{2}\right)_{3}$	Ethyl	2	182 (0.2)	1.5284	$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{3}$	73.87	7.97	4.10	73.90	8.05	4.22	+ +
58	H	CH_{2}	II	$\left(\mathrm{CH}_{2}\right)_{3}$	β-Methoxyethyl	6	d	1.5301	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{4}$	69.95	7.34	4.08	69.91	7.37	4.13	+ +
59	H	CH_{2}	${ }_{0} \cdot \mathrm{CH}_{3}$	CII_{2}	E'thyl	9	d	1.5375	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$	72.22	7.07	4.68	71.96	7.25)	4.95	+ +
60	II	CH_{2}	$m \cdot \mathrm{CH}_{3}$	CHI_{2}	Ethyl	9	136 (0.1)	1.5362	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$	72.22	7.07	4.68	72.36	7.24	4.75	$t+$
61	o- ClT_{3}	CH_{2}	II	CH_{2}	Ethyl	10	142 (0.1)	1.5405	$\left({ }_{118} \mathrm{H}_{21} \mathrm{NO}_{3}\right.$	72.22	- ${ }^{\text {. }} 107$	4.68	72.07	6.97	4.87	
(62	$m-\mathrm{CH}_{3}$	CH_{2}	II	CH_{2}	Ethyl	10	$139(0.1)$	1.5376	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$	72.22	7.07	4.68	72.18	6.95	4.71	+ +
63	$m-\mathrm{CII}_{3}$	CH_{2}	II	($\left.\mathrm{ClH}_{2}\right)_{1}$	Ethyl	9	167 (0.1)	1.5315	$\mathrm{C}_{20} \mathrm{II}_{25} \mathrm{NO}_{3}$	73.37	7.70	4.28	73.81	7.55	4.311	$++$
64	${ }_{0} \mathrm{CHI}_{3}$	CH_{2}	o-CII ${ }_{3}$	CH_{2}	Methyl	6	d	1.5483	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$	72.22	7.07	4.68	71.99	0.98	4.99	
65	${ }_{\text {o- }-\mathrm{CH}_{3}}$	CH_{2}	${ }_{o}-\mathrm{CII}_{3}$	ClH_{2}	Ethyl	2	143(11.1)	1.5401	$\left.\mathrm{C}_{19} \mathrm{~F}_{2 \mathrm{a}} \mathrm{NO}\right)_{3}$	72.82	7.40	4.47	72.97	7.72	4.96	+ +
66	$m-\mathrm{CII}_{3}$	CH_{2}	m - CIH_{3}	CH_{2}	Ethyl	9	146 (0.1)	1.5361	$\mathrm{C}_{19} \mathrm{H}_{2 \mathrm{a}} \mathrm{NO}_{3}$	72.82	7.40	4.47	73.48	7.54	4.72	$+++$
67	$p-\mathrm{CH}_{3}$	CH_{2}	p- CH_{1}	ClI_{2}	Ethyl	2	$13710.1)$	1.5340	$\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{3}$	72.82	7.40	4.47	72.90	7.65	4.72	$+$
68	$\left.3.4-1 \mathrm{CII}_{3}\right)_{2}$	CH_{2}	3,4-($\left.\mathrm{CHI}_{5}\right)_{2}$	CH_{2}	Ethyl	2	175 (1).1)	1.5369	$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4}$	73.87	7.97	4.10	73.94	7.75		+ +
${ }^{69}$	${ }_{0}-\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{2}	$0-\mathrm{C}_{2} \mathrm{II}_{5}$	CH_{2}	Ethyl	2	d	1.530:3	$\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{3}$	73.87	7.97	4.10	73.65	7.81	4.32	++i
70	p-i- $\mathrm{C}_{3} \mathrm{II}_{4}$	CH_{2}	$p-i-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{2}	Eihyl	2	d	1.5229	$\mathrm{C}_{3} \mathrm{H}_{31} \mathrm{NO}_{3}$	74.76	8.46	3.79	74.30	8.51	4.06	$++$
71	p-() CH_{3}	$\left(\mathrm{CII}_{2}\right)_{3}$	$m \cdot \mathrm{CII}_{1}$	ClH_{2}	Phenyl	6	d	1.5606	$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{3}$	77.09	6.99	3.60	77.05	7.2:	3.80	
72	${ }_{0}-\mathrm{OCH}_{3}$	CH_{2}	o. $) \mathrm{CII}$	CH_{2}	L'thyl	2	d	1.5478	$\mathrm{C}_{19} \mathrm{II}_{23} \mathrm{NO}_{5}$	66.07	6.71	4.06	66.00	(6.89)	4.21	-
78	$\mathrm{m} \cdot \mathrm{OClH}_{3}$	CH_{2}	m - OCH_{3}	CH_{2}	Ethyl	2	d	1.5435	$\mathrm{C}_{19} \mathrm{II}_{3} \mathrm{NO} \mathrm{O}_{3}$	66.07	6.71	4.06	66.10	6.82	4.24	$+$
74	p-OCHI	CII,	p-0CII ${ }_{3}$	ClH_{4}	Ethyl	2	d	1.5436	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO} \mathrm{O}_{5}$	66.07	6.71	4.06	66.17	0.94	4.61	$+$
75	2,6-($\left.\mathrm{OCHI}_{3}\right)_{2}$	ClI_{2}	2,6-($\left.\mathrm{OCH}_{\mathrm{i}}\right)^{\text {2 }}$	CH_{2}	Ethyl	\square	$89-90$		$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}$:	62.21	6.71	3.46	62.23	6.19	3.37	-
76	o- $\mathrm{OC}_{2} \mathrm{H}_{3}$	CH_{2}	$0-\mathrm{OC}_{2} \mathrm{IH}_{5}$	Cl_{2}	Ethyl	2	48-50		$\left.\mathrm{C}_{41} \mathrm{H}_{27} \mathrm{NO}\right)_{5}$	(i7.35	7.26	3.73	67.61	7.04	3.75	-
77	II	CH_{2}	${ }_{-}-\mathrm{COOC}_{2} \mathrm{I}_{5}$	CH_{2}	Ethyl	$!$	d	1.3.362	$\left.\mathrm{C}_{20} \mathrm{H}_{9,} \mathrm{NO}\right)_{5}$	67.21	6.49	3.92	66.91	(3.35	4.21	
78	$\mathrm{m}^{\text {(} \mathrm{Cl}_{3}}$	CH_{2}	$m-\mathrm{CF}_{3}$	CII:	Ethyl	2	$126(0.2)$	1.4707	$\mathrm{C}_{145} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{NO}_{3}$	54.16	4.07	3.33	54.40	4.20	3.60	$++$
79	${ }_{0} \mathrm{Cl}$	CHI_{2}	$o-\mathrm{Cl}$	CII,	Bthyl	\cdots	146 (1).1)	1.5562	$\mathrm{C}_{17} \mathrm{IH}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{2}{ }^{e}$	57.61	4.84	3.95	57.64	4.73	4.03	
N11	$p-\mathrm{Cl}$	CH_{2}	$p-\mathrm{Cl}$	ClH_{2}	Ethyl	'2	171 (0).1)	1.5538	$\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{3}{ }^{5}\right.$	57.64	4.84	3.95	57.71	5.08	4.00	+ + +
N1	p - Cl	CH_{2}	p - Cl	ClH_{2}	Phenyl	6	S4-87	...	$\mathrm{C}_{41} \mathrm{H}_{1} \mathrm{Cl} \mathrm{Cl}_{2} \mathrm{NO}$	62.71)	4.26	9	62.90	4.31		
S2	p- NO_{2}	Cll	$p-\mathrm{NO}$	CII.	lithyl	2	105-106	. .	$\mathrm{C}_{1}: \mathrm{H}_{1} \mathrm{~N}_{3} \mathrm{O}_{5}$	54.40	4.57	11.19)	54.40	4.51	11.25)	-

 (1.20.16. a Anal Caled: Cl, 17.(03. Fomme: (1, 18.23.

Table III
Aralkoxy-N-Aryloxyalkylamines and Aralkyl N-Aryloxyalkylhydroxamates

								$\left.\mathrm{H}_{2}\right)_{n} \mathrm{O}$								
No.	X	n	Y	m	Z	Method	Mp or bp (mm), ${ }^{\circ} \mathrm{C}$	$n^{25} \mathrm{D}$	Formula	$\overbrace{\mathrm{C}}^{-\mathrm{Cr}}$	$\text { cd. } \%$ H	$-$	$\overbrace{\mathrm{C}}^{\mathrm{F}}$	ind. H	N	Activity ${ }^{\text {a }}$
147	H	1	H	2	H	4	121-122		$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClNO}_{2}{ }^{6}$	64.40	6.48	5.01	64.26	6.39	4.95	+ +
148	H	1	$m-\mathrm{CH}_{3}$	2	H	4	145 (0.1)	1.5532	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$	74.68	7.44	5.44	74.64	7.44	5.73	+ +
149	H	1	H	3	H	4	103-104		$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClN} \mathrm{O}{ }_{2}{ }^{\text {b }}$	65.41	6.86	4.77	65.96	7.01	4.90	+ + +
150	$m-\mathrm{CH}_{3}$	1	H	3	H	1.9.4	84-86		$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{ClNO}_{2}{ }^{\text {b }}$	66.33	7.20	4.55	66.06	7.45	4.25	+ + +
151	$p-\mathrm{Cl}$	1	H	3	H	1,9.4	c	1.55610	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClNO}_{2}{ }^{\text {d }}$	6 º. 86	6.22	4.80	65.83	6.16	4.88	
152	$m-\mathrm{CH}_{3}$	1	H	4	H	1,9,4	119-120	. . .	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{ClNO} \mathrm{O}^{\text {b }}$	67.17	7.52	4.35	67.48	7.67	4.45	T+T
153	$m \cdot \mathrm{CH}_{3}$	1	$p \cdot \mathrm{Cl}$	3	H	1,9,4	133-134		$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NO}_{2}{ }^{\text {, }}$,	59.65	6.18	4.09	59.54	6.40	4.15	+ +
154	1 I	3	$2,4-\mathrm{Cl}_{2}$	2	H	1,9,4	147-148	. $\cdot \cdot$	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{NO}_{2}{ }^{\text {b.j }}$	54.20	5.35	3.72	54.12	3.24	3.78	
155	H	1	H	2	$\mathrm{COOC}_{2} \mathrm{H}_{6}$	1,9	162 (0.1)	1.5379	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4}$	68.55	6.71	4.44	68.22	6.51	4.48	+ + +
156	H	1	H	3	$\mathrm{COOC}_{2} \mathrm{H}_{5}$	1,9	168 (0.1)	1.5345	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4}$	69.28	7.04	4.25	69.41	7.04	4.46	+ +
157	H	1	$m-\mathrm{CH}_{3}$	2	$\mathrm{COOC}_{2} \mathrm{H}_{5}$	1.9	172 (0.1)	1.5342	$\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4}$	69.28	7.04	4.25	69.37	7.20	4.50	T +
158	H	1	$m-\mathrm{CH}_{3}$	2	$\mathrm{COOC}_{6} \mathrm{H}_{5}$	6	c	1.5690	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{4}$	73.19	6.14	3.71	73.35	6.03	3.93	+ +
159	$m \sim \mathrm{CH}_{3}$	1	$p-\mathrm{Cl}$	3	COOCH_{3}	6	c	1.5465	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClNO}_{4}{ }^{9}$	62.73	6.09	3.85	62.89	6.83	3.86	+ +
160	H	1	$m \cdot \mathrm{CH}_{3}$	2	$\mathrm{COC}_{6} \mathrm{H}_{6}$	8	c	1.5812	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{3}$	76.43	6.41	3.87	76.39	6.34	4.03	+ +
161	$m-\mathrm{CH}_{3}$	1	H	4	COCH_{3}	8	c	1.5454	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3}$	73.36	7.70	4.28	73.39	7.58	4.27	+

${ }^{a}$ At 0.25% diet level. See footnote a, Table I, for a description of the activity data. ${ }^{b}$ Hydrochloride. © These compounds were purified by short-path distillation at $100-120^{\circ}$ bath temperature (0.001 mm) since decomposition occurred in attempts to use conventional equipment. d Anal. Calcd: Cl, 12.15. Found: Cl, 12.33. e Anal. Calcd: Cl, 20.72. Found: Cl, 20.70. f.Anal. Calcd: Cl, 28.23. Found: Cl, 28.15. gnal. Calcd: $\mathrm{Cl}, 9.74$. Found: $\mathrm{Cl}, 9.89$.
free amine. ${ }^{3 \mathrm{a} .7}$ The arylmethoxy-, arylethoxy-, and arylpropoxyamine hydrochlorides prepared in this study appeared to be reasonably stable on prolonged standing at room temperature. In a few instances, a mild aldehydic odor was perceptible, but no further evidence of instability was apparent. A few of the corresponding aryloxyalkoxyamine hydrochlorides [ArO$\left.\left(\mathrm{CH}_{2}\right)_{n} \mathrm{ONH}_{2} \cdot \mathrm{HCl}\right]$, however, underwent more extensive dissociation when stored at room temperature for periods of a year or longer, generating free HCl and a strong aldehy dic odor.
The reaction of these hydroxylamines with alkyl and aryl chloroformates using excess hydroxylamine, pyridine, or aqueous alkali as acid acceptor yielded the corresponding carbalkoxy- and carbaryloxy hydroxamates (reactions 5 and 6). This route was followed advantageously when products having carbaryloxy groups and carbalkoxy groups other than carbethoxy were desired.

Acylation of the aralkylated hydroxylamines of type D and E with the appropriate acid chloride or anhydride produced the corresponding acyl- and aroylhydroxamates of type G and H in excellent yields (reactions 7 and 8). Formylations were performed by heating the amine hydrochlorides with formamide as reported by Galat and Elion. ${ }^{8}$ These aralkylated acyl- and aroylhydroxamates are generally low-melting solids or highboiling colorless oils. They were purified by recrystallization, vacuum distillation, or molecular distillation. Their physical constants and analytical data are listed in Tables VII and VIII. The corresponding aryloxyalkyl derivatives are included among the compounds listed in Tables III and IV.

Some uncertainty remains in the chemical literature concerning the structure of dialkylated hydroxamic acids. Frequently, structure II has been assigned

[^2]to the reported compounds, ${ }^{9.10}$ while the alternate structure III has been less often used. The former structure appears to be excluded for compounds of type H by the method of preparation. Cooley, et al., ${ }^{10}$ reported the preparation of a dibenzylated product from acetohydroxamic acid and benzyl chloride but did not report any attempt to ascertain its correct structure. Using their method, we obtained a product having the properties described by them and which was identical with the compound we obtained from the reaction of $\mathrm{O}, \mathrm{N}-$ dibenzylhydroxylamine with acetyl chloride. Thus, it appears that in the series of compounds studied by us the diaralkylation of hydroxamic acids leads to compounds of structure III rather than II. ${ }^{11}$

Aralkylated hydroxylamines of type D and E were readily converted to the corresponding urea derivatives of type J and K by direct action with cyanic acid and with alkyl or acyl isocyanates. These compounds were obtained in high yields and were readily crystallizable from ligroin, alcohol, or water to give stable, sharpmelting, colorless, crystalline solids (Table IX).

The preparation of compounds of types C, E, or H where $\mathrm{R}_{1} \neq \mathrm{R}_{2}$, i.e., "unsymmetric" compounds, was accomplished in two general ways. The alkylation of the carbethoxyhydroxamates of type $\mathrm{B}^{7 \mathrm{c}}$ with aralkyl halides under the conditions employed for reaction 2 produced high yields of the desired compounds of type C (reaction 9). Alternately, N-aralkylcarbethoxyhydroxamic acids of type F were prepared from N aralkylhydroxylamines and ethyl chloroformate, following the procedure described by Zinner ${ }^{12}$ for the preparation of the corresponding N-alkylcarbethoxyhydroxamates. Alkylation with the appropriate aralkyl halides
(9) H. L. Yale, Chem. Rev., 33, 209 (1944).
(10) J. H. Cooley, W. D. Bills, and J. R. Throckmorton, J. Org. Chem., 25. 1734 (1960).
(11) (a) G. M. Steinberg and R. Swidler, ibid., 30, 2362 (1965). have presented evidence for the existence and relative reactivities of the various benzohydroxamate anions. (b) For a discussion of the mechanism of reactions involved in the synthesis and hydrolysis of N-hydroxycarbamates. see E. Boyland and R. Nery, J. Chem. Soc., Sect. C, 346 (1966).
(12) G. Zinner, Arch. Pharm., 292, 329 (1959).

Pable IV: Aryloxyalkoxyamines and Abyloxyalkyl Hydroxamines

No.	X	n	Y	Z	Method	$\begin{aligned} & \mathrm{Mp} \text { or } \mathrm{bp} \\ & (\mathrm{~min}) .{ }^{\circ} \mathrm{C} \end{aligned}$	$n^{25} \mathrm{D}$	Formula	C	$\begin{array}{r} \text { Caled. } \\ \mathbf{H} \end{array}$	N	C	ound HI	N	Activity ${ }^{\text {a }}$
$162^{\prime \prime}$	2,4.Cl:	2	H	H	3	189-184	.	$\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{NO}_{e^{c,}{ }^{\text {c }} \text { d }}$	37.16	3.90	5.42	37.19	3.89	5.50	
163	H	3	II	II	3	118-120	. .	$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{ClNO}{ }_{e}{ }^{\text {c }}$	53.07	6.93	6.85	53.12	7.03	7.04	+
$164^{\text {b }}$	2,4-Cl.	2	H	$\mathrm{COOC}_{3} \mathrm{H}_{5}$	1	67-69	.	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{4}{ }^{e}$	44.92	4.46	4.76	4.5.02	4.38	4.88	$+$
165	II	3	II	COOCH_{3}	1	63.70	. .	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4}$	58.65	(.71	6.22	58.77	6.7.)	6.22	
166	II	3	H	$\mathrm{COOCO}_{2} \mathrm{H}_{3}$	1	43-46		$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4}$	60.23	7.16	5.85	60.68	7.14	5.76	
167	H	:	II	$\mathrm{CO} \mathrm{Ci}_{6} \mathrm{H}_{5}$	7	f	1.5739	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}$	70.s:3	6.32	5.16	70.72	6.19)	5.11	
168	$m \cdot \mathrm{CII}_{1}$	2	Benzyl	II	9, 4	g	...	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClNO}$	65.41	6.86	4.76	65.30	0.93	4.78	-
169	2,4-Cli	2	m-Methylbenzyl	H	9, 4	94-96	\ldots	$\mathrm{C}_{16} \mathrm{HI}_{18} \mathrm{Cl}_{12} \mathrm{NO}_{2}{ }_{2}{ }^{\text {, }}$	52.99	5.00	3.86	52.79	5.00	4.45	
170	HI	3	Benzyl	II	9, 4	117-119		$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClNO}_{2}{ }^{\text {c }}$	(6). 42	(6.80	4.77	65.58	679	5.04	+ +
171	m - CH_{3}	3	Benzyl	H	4	9	1.5510	$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO} \mathrm{O}_{2}$	75.: 4	7.80	5.16	74.97	7.66	5. 25	
172	p-Cl	3	Benzy	II	1,9,4	116-118		$\mathrm{C}_{16} \mathrm{II}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{c}^{\text {. }}$	68.54	5.83	4.27	58.67	5. 76	4.26	+ + +
173	H	3	γ-Phenoxypropyl	II	2, 4	100-102	...	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{ClNO}_{3}{ }^{\text {c }}$	6.3 .99	7.16	4.15	64.14	7.22	4.16	$++$
174	II	2	Benzyl	$\mathrm{COOCO}_{2} \mathrm{II}_{3}$	9	163 (0.1)	1.5388	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4}$	68. 5.5	6.71	4.44	68.47	7.06	4.39	+
175	$2,4-\mathrm{Cl}_{2}$	2	2,4-Cl-Phenoxyethyl	$\mathrm{COOC}_{2} \mathrm{II}_{5}$	2	64-65	...	$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Cl}_{4} \mathrm{NO}_{5}{ }^{i}$	47.23	3.96	2.90	47.35	3.69	2.42	-
176	H	3	γ-Phenylpropyl	COOCH_{3}	9	g	1.5332	$\mathrm{C}_{20} \mathrm{HI}_{25} \mathrm{NO}_{4}$	69.95	7.34	4.08	69.98	7.17	4.05	+ + +
177	H	8	Benzyl	$\mathrm{COOCO}_{2} \mathrm{H}_{3}$	9	167 (0.1)	1.5335	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4}$	69. 28	7.04	4.25	69.32	6.75	4.23	+
178	$m-\mathrm{CII}_{3}$	3	Benzyl	$\mathrm{COOC}_{2} \mathrm{II}_{5}$	9	167 (0.05)	1.3312	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{4}$	69.95	7.34	4.08	70.03	7.33	3.84	+
179	H	3	α-Phenethyl	COOCH:	4,	41-43)	...	$\mathrm{C}_{19} \mathrm{HH}_{23} \mathrm{NO}_{3}$	72.52	7.40	4.47	72.73	7. 25	4.42	
180	p - C:	3	Benzyl	COCH	8	9	1.5565	$\mathrm{C}_{18} \mathrm{II}_{20} \mathrm{ClNO}_{3}{ }^{k}$	64.76	6.0 .4	4.19)	64.77	6.09)	4.17	$t+t$

 Caled: $\mathrm{Cl}, 10.62$. Fonnd: ($\mathrm{ll}, 10.83$.

Tablek V: Abukexymmines

 footnote g), reported np $195-198^{\circ}$ lec.

Table VI
N-Aralkylaralkoxyamines

${ }^{a}$ At 0.25% diet level. See footnote a, Table I, for a description of the activity data. ${ }^{b}$ See ref 6 b . ${ }^{c}$ Hydrochloride. ${ }^{d}$ At 0.5% diet level. ${ }^{\circ} \mathrm{Cl} . \quad$ Hydrogen sulfate. \quad See ref 3 a . ${ }^{n}$ Obtained by alkaline hydrolysis of 77. ${ }^{i}$ Anal. Caled: F, 29.5弓. Found: F, 29.45. ${ }^{i}$ Anal. Calcd: Cl, 33.40. Found: Cl, 33.50. ${ }^{k}$ See P. Mamalis, J. Green, D. J. Outred, and M. Rix, J. Chem. Soc., 3915 (1962). 'Anal. Caled: Cl, 25.13. Found: $\mathrm{Cl}, 24.95$.

Table VII
Benzyl Acyl- and Aroylhydroxamates

			Mp or bp				aled,			ound. \%		
No.	x	R	(mm), ${ }^{\circ} \mathrm{C}$	$n^{22_{\text {d }}}$	Formula	C	H	N	C	H	N	Activity ${ }^{\text {a }}$
$36^{\text {b }}$	H	Methyl	109 (0.2)	1.5381	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$	65.43	6.71	8.48	65.24	7.01	8.37	+
37	H	Isopropyl	63-64		$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$	68.40	7.82	7.27	68.22	7.93	7.34	
38	H	n-Propyl	56-58		$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}$ O,	68.40	7.82	7.27	68.08	7.98	7.35	+
39	H	n-Hexyl	142 (0.3)	1.5080	$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$	71.45	9.00	5.95	71.35	8.92	6.09	$+$
40	H	n-Heptyl	145 (0.3)	1.5049	$\mathrm{C}_{65} \mathrm{H}_{33} \mathrm{NO}_{2}$	72.25	9.29	5.62	72.45	9.21	5.91	+
41	H	n-Octyl	34-35		$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{2}$	72.95	9.57	5.32	72.56	9.47	5.54	+
42	H	n-Tridecyl	72-73		$\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{2}$	75.60	10.58	4.20	75.59	10.62	4.19	+
43	H	n-Pentadecyl	81-83		$\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{NO}_{2}$	76.40	10.87	3.87	76.67	10.85	4.08	+
$44^{\text {b }}$	H	Phenyl	102-103		$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$	73.99	5.77	6.17	74.19	5.85	6.08	
45	m - CH_{3}	n-Hexyl	158 (0.2)	1.5076	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2}$	72.25	9.29	5.62	72.60	9.18	5.81	
46	$m-\mathrm{OCH}_{3}$	Methyl	128 (0.1)	1.5418	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}$	61.52	6.71	7.20	61.69	6.81	7.13	-

${ }^{a}$ At 0.5% diet level. See footnote a, Table I, for a description of the activity data. ${ }^{b}$ See ref 10 . P. Mamalis, M. J. Rix, and A. A. Sarsfield, J. Chem. Soc., 6278 (1965), have also reported the formation of this compound by the reaction of benzyl O-acetamidobenzohydroxamate and acetic anhydride.
(reaction 10) led to the desired unsymmetrical compounds of type C.

The serum cholesterol lowering activity of most of t.hese compounds has been evaluated using male Charles River albino weanling rats according to the method described by Berger and his associates. ${ }^{4 a}$ The concentration of the drug in the diet was usually 0.25 or 0.50%. The screening data are included in Tables I-IX and are expressed in terms of reduction of serum cholesterol relative to control animals on the same diet without drug.

Of the various types of aralkoxyamine compounds evaluated, the most potent serum cholesterol lowering activity was exhibited by the aralkyl N-aralkylcarbalkoxyhydroxamates (Table II). N-Aralkylaralkoxyamines (Table VI) were next in order of potency, followed by aralkyl $\mathrm{N}^{\text {-aralkylacyl- and -aroylhydroxa- }}$ mates (Table VIII). The N-unsubstituted aralkoxyamines (Table V), their acyl- and aroylhydroxamate derivatives (Table VII), their carbalkoxy- and carbaryloxyhydroxamate derivatives (Table I), and the urea compounds derived from both the N-unsubstituted

No．	X	A	Y	13	12	Norm （ i 1 m ）．${ }^{\circ}(\cdot$	$n=10$	Forimila	C	Caled，\％ II	\cdots	C	$\begin{gathered} \text { ound } \text {. } \\ \mathrm{H} \end{gathered}$	N	Ancivity＊
111	11	Clly	II	（11）	II	60－61	．．	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$	74.66	6.27	5． 80	¢4．N\％	6． 101	5． 76	＋＋
$112^{\prime \prime}$	II	CII．	11	CII，	Methyl	57 \％	\ldots	$\mathrm{C}_{16} \mathrm{H}_{1} \mathrm{NO}_{2}$	75． 27	6．71	5． 49	75.29	7.95	5．（6］	$t+$
11.3	1 I	CII．	11	CH．	killiyl	146（1）．1）	1．8535	$\mathrm{C}_{1} \mathrm{II}_{19} \mathrm{NO}_{2}$	75． 51	7．11	¢． 20	7．）．s	7.00	5． 41	＋
114	11	CH	II	Cl_{2}	Isopropyl	136 （1）．11	1．3470	$\mathrm{C}_{18} \mathrm{I}_{21} \mathrm{NO}_{2}$	76.29	7.47	4.94	76.50	7．45	5．1）2	＋＋+
115	1 I	CH_{2}	II	Clle	n－IIepryl	167 （1）．2）	1.3306	$\mathrm{Cr}_{92} \mathrm{I}_{29} \mathrm{NO} \mathrm{O}_{2}$	$7 \times .001$	\＆．63	4.13	78．06	¢． 5.0	4.19	$+{ }^{+c}$
116	II	CH_{2}	11	ClH	Chlorome（hyl	1	1.5797	$\mathrm{C}_{16} \mathrm{HI}_{16} \mathrm{ClNO}_{2}$	60．32	5． 56	4.83	66 （6）	5． 04	4.78	＋
117＂	II	CH_{2}	11	ClH_{4}	3－Carboxyproy	＜3－ 35	．．	$\left.\mathrm{C}_{19} \mathrm{HH}_{21} \mathrm{NO}\right)_{4}$	69.71	6.46	4.28	69.90	6．18	4.27	－
118	II	CH_{2}	II	CH_{2}	I＇henyl	（6）． 67		$\left(\mathrm{C}_{42} \mathrm{II}_{1}, \mathrm{NO}\right)_{2}$	79．47	6． 104	4.41	79.9	6.23	4.59	1．1．
119	II	CH_{2}	11	Clis	Bengy	d	1．3ici6	$\left.\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}\right)_{2}$	79．73	6.39	4.20	80.25	（i．59	4.18	－
120	II	ClH_{2}	II	（ $\mathrm{CII}_{\text {\％}}$	P＇henethyl	24．30		$\left.\mathrm{C}_{23} \mathrm{IH}_{23} \mathrm{NO}\right)_{2}$	79.97	6.71	4.05	79.91	6.86	4.122	$+$
121	II	CH2	II	$\left(\mathrm{ClH}_{2}\right)_{1}$	II	d	1.6559	$\mathrm{C}_{17} \mathrm{H}_{1}, \mathrm{NO} \mathrm{O}_{2}$	75．81	7.11	5.30	76.13	7.24	5.25	
122	II	Clis．	11	${ }_{\left(1 H_{2}\right)_{3}}$	Methyl	1	1.5503	$\left.\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}\right)_{2}$	76.29	7.47		76.06	7.10		＋+
12：3	HI	CH_{2}	11	（CII．$)_{4}$	P＇lenyl	1	1.5812	$\mathrm{C}_{23} \mathrm{I}_{23} \mathrm{NO}_{2}$	79.97	6.71	4.05	79.39	7.16	4.23	
1.4	H	$\left(\mathrm{CH}_{2}\right)_{3}$	II	Clla	Methyl	145 （1）．1）	1.8304	$\left.\mathrm{C}_{18} \mathrm{IL}_{21} \mathrm{NO}\right)_{2}$	76.29	7.47	4.94	76．12	7.11	5．38	－
125	II	$\left(\mathrm{CII}_{2}\right)_{4}$	11	（ $\left.\mathrm{ClI}_{9}\right)_{1}$	thenyl	d	1．575	$\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO} \mathrm{O}_{2}$	80．30	7.29	3.75	80.84	7.47	3.68	－
120	a－ CIH_{3}	CII．	11	CII．	Methyl	$38-40$	．．	$\left(\mathrm{C}_{17} \mathrm{II}_{19} \mathrm{NO}\right)$.	75.81	7.11	5.0	75.86	6.99	5.14	
$1 \cdot 7$	$m \cdot \mathrm{CHI}_{3}$	CII．	11	CH_{2}	Methyl	141（1）．1）	1.8565	$\mathrm{C}_{17} \mathrm{II}_{4} \mathrm{NO}_{2}$	75．81	7.11	5． 0^{0}	76.12	7.39	5）19	＋
128	$m \cdot \mathrm{Cll}_{3}$	CIH_{2}	II	CH_{2}	n－ITexyl	d	1．3．308	$\mathrm{C}_{22} \mathrm{II}_{2,} \mathrm{NO} \mathrm{O}_{2}$	75.84	$\therefore 6.3$	4.13	77．90	$\therefore .6$	4.19	+ ＋
129	II	CH_{2}	O－CHa	（1）	Methyl	66－6s		$\mathrm{C}_{17} \mathrm{II}_{1,} \mathrm{NO} \mathrm{O}_{2}$	75．81	711	5.90	75．：3	7.01	5．31	＋
130	II	ClH_{2}	$\cdots \mathrm{CH}_{3}$	Clt	Methyl	141 （11．1）	1．5．562	$\left.\mathrm{C}_{18} \mathrm{HI}_{14} \mathrm{NO}\right)_{2}$	75． 51	7.11	5． 0^{0}	75.73	7.25	5． 22	$++$
131	${ }_{0}-\mathrm{CH}_{3}$	CH_{2}	$\mathrm{o}^{-\mathrm{ClH}_{3}}$	C．II	Wethrol	7！ふ1		$\left.\mathrm{C}_{18} \mathrm{IH}_{21} \mathrm{NO}\right)_{2}$	76.29	7.47	4.14	76.20	7.42	497	－－
1：3：	${ }_{0}$－ ClH_{3}	Cll：	o－CHI	（ 11.	Isoproper	147111）	1．847	$\left.\mathrm{C}_{40} \mathrm{IH}_{2} \mathrm{NO}\right)_{2}$	7\％．1：3	－109	4.510	76．45）	S． $1: \%$	1.25	
13：3	${ }^{1}-\mathrm{CH}_{3}$	Cll ${ }_{2}$	（－Cll	Cll	I＇henyl	（13－9\％）		$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{NO}_{2}$	79．97	13．71	1．10\％	7 T .44	（5． 60	4.28	
$1: 34$	$\mathrm{m} \cdot \mathrm{ClO}_{3}$	Cll：	m－ CH_{3}	CHz	Methyl	d	1.60 .4	$\left.\mathrm{C}_{18} \mathrm{IH}_{4} \mathrm{NO}\right)_{\text {，}}$	76.93	7.47		76.12	$\overline{7} .60$		1.
$13:$	3，4－（ CII $_{3}$ ）	CII：	：, $4 \cdot 1 \mathrm{Cl}_{3} \mathrm{H}$	Cli	Methy	d	1 \％\％\％4	$\mathrm{C}_{30} \mathrm{II}_{2,} \mathrm{NO}$	77.13	S．09）		76.81	「．${ }^{\text {\％}}$		$t+$
136	m－ COH_{3}	ClH_{2}	II	（ $\mathrm{ClI}_{3}{ }^{\text {\％}}$	Methyl	d		$\left.\mathrm{Cl}_{19} \mathrm{IL}_{3} \mathrm{NO}\right)_{2}$	76.72	7.79	1.71	76.57	7.61	4.17	$++ \pm$
137	m． ClH_{3}	Cli，	1 I	$\left(\mathrm{ClH}_{2}\right)_{;}$	Plenyl	d	1． 3 \％ 6 （	$\mathrm{C}_{44} \mathrm{II}_{2} \mathrm{NO}_{3}$	sto．1！	－ 01	3.111	sto． 601	7.35	4．13	＋+
130	II	$\left(\mathrm{ClH}_{2}\right)^{\prime}$	$m \cdot \mathrm{ClH}_{4}$	CH_{2}	Methyl	141111．1）	1.347	$\mathrm{Cr}_{17} \mathrm{H}_{2} \mathrm{NO} \mathrm{O}_{2}$	76.73	7.81	4.71	76.50	$7.8!$	4.75	－
139	p－OCII	CH_{2}	$17.0 \mathrm{ClO}_{3}$	ClI_{2}	Methyl	$36-37$		$\mathrm{C}_{18} \mathrm{I}_{21} \mathrm{NO}_{4}$	6x．jos	6.71	4.44	65.10	6.32	4.84	－－
140	p－0CII ${ }_{3}$	Cl_{2}	p－（）CHI	ClH_{2}	1sopropyl	1	1．5409	$\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{NO}_{4}$	69.14	7.34	40 N	70.11	7.31	4.25	
141	${ }^{-0} \mathrm{OCII}$	ClH_{2}	$1 \mathrm{O} \mathrm{OCOH}_{3}$	CH_{2}	Phenyl	102－110		$\left.\mathrm{Com}_{3} \mathrm{H}_{2} \mathrm{NO}\right)_{4}$	73.19	1i． 14	3.7	7－9\％	13.32	3.79	－
142	$m-\mathrm{CS}_{3}$	CH_{2}	$m-\mathrm{CF}_{4}$	CH_{2}	Methir	${ }^{\prime}$	1.484	$\mathrm{C}_{1 \times} \mathrm{II}_{15} \mathrm{~F}_{6} \mathrm{~N}\left(1_{2}\right.$	$\pi 5$	3． 86	3 B	3i． $1!1$	3 （6）	3.65	
$14: 3$	$p-\mathrm{Cl}$	ClH_{2}	ρ－ Cl	CII．	Methyl	$11+14$	．．	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}_{2}$	3）－セ	4.66	$21 . \mathbf{S o}^{\circ}$	39.14	4.61	$\underline{29} .16$	
144	p－Cl	CH_{2}	$p-\mathrm{Cl}$	C11）	Isoproper	二－\％		$\left.\mathrm{C}_{15} \mathrm{IH}_{6} \mathrm{Cl}_{2} \mathrm{NO}\right)_{3}$	（1）．35）	i） 44	－ 6115	（6）1：	S．19	19．1144	\cdots
145	$p \cdot \mathrm{Cl}$	CH_{2}	p－ C	$\mathrm{Cl}^{\text {c }}$	l＇menyl	7－ 1×2		$\mathrm{Com}_{2} \mathrm{H}_{18} \mathrm{Cl}_{\underline{2}} \mathrm{NO}_{2}$	6.5 .30	1.44	小．3n	65.17	4.315	1S．50	：
F4is	11	（\％）	$0 \cdot(0) 111$	（ $\mathrm{II}^{\text {e }}$	Methel	$121 \cdots 12$			［以．2］	5．73		63．3）	－$\overline{5}$		

Table IX
Aralkoxyurea Compounds

No.	X	R_{1}	Method	R_{2}	R_{3}	Mp, ${ }^{\circ} \mathrm{C}$	Formula	C	H	N	C	H	N	Activity ${ }^{\text {a }}$
$181^{\text {b }}$	H	H		H	H	139-141	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$	57.81	6.07	16.88	57.56	6.08	16.64	+
182	H	H	12a	H	$\mathrm{C}_{2} \mathrm{H}_{6}$	51-52	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$	61.83	7.27	14.42	61.74	7.04	14.26	-
183	H	H	11	H	COCH_{3}	139-140	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$	57.68	5.81	13.46	57.89	5.68	13.20	+
184	$p-\mathrm{Cl}$	H	11	H	COCH_{3}	172-174	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{3}{ }^{\text {c }}$	49.49	4.57	11.54	49.47	4.36	11.55	-
185	$3.4 \cdot \mathrm{Cl}_{2}$	H	11	H	COCH_{3}	162-164	$\mathrm{C}_{69} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{\text {d }}$	43.34	3.64	10.11	43.48	3.75	9.86	-
186^{e}	HI	Benzyl		H	H	98-100	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	70.29	6.29	10.93	69.60	6.27	11.05	$t+1$
187	H	l3enzyl	12a	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	60-61	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Ni}_{2} \mathrm{O}_{2}$	71.80	7.09	9.85	71.60	7.17	9.83	-0
188	H	Benzyl	11	H	COCH_{3}	61-62	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$	68.44	6.08	9.39	68.18	6.03	9.37	+8
189	11	Benzyl	12 b	Benzyl	Benzyloxy	40-41	$\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$	76.96	6.24	6.19	77.00	6.18	6.14	$+{ }^{+0}$
190	$p-\mathrm{CH}_{3}{ }^{\text {h }}$	H	11	H	$\mathrm{COC}_{6} \mathrm{H}_{5}$	144-146	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$	69.21	6.45	8.97	69.23	6.28	8.79	+
191	H^{h}	γ-Phenylpropyl	11	H	COCH_{8}	44-40\%	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}$	71.16	7.39	7.91	71.43	7.45	7.71	+
192	H^{i}	H	11	H	$\mathrm{COC}_{2} \mathrm{H}_{5}$	97-98	$\mathrm{C}_{13} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{4}$	58.63	6.82	10.52	58.52	6.76	10.39	+
193	H^{i}	γ-Phenoxypropyl	11	H	COCH_{3}	65-67	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}$	65.27	6.78	7.25	64.96	6.69	7.20	-

${ }^{a}$ At 0.25% diet level. See footnote a, Table I, for a description of the activity data. ${ }^{b}$ R. Behrend and K. Leuchs, Ann. Chem., 257, 203 (1800). © Anal. Caled: Cl, 14.61. Found: Cl, 14.72. ${ }^{d}$ Anal. Caled: Cl, 25.59. Found: Cl, 25.70. e See ref 6b. ${ }^{\prime}$ At 1.0% diet level. o At 0.5% diet level. ${ }^{h} \gamma$-Phenylpropoxy derivative. ${ }^{i} \gamma$-Phenoxypropoxy derivative.
aralkoxyamines and N -aralkylaralkoxyamines (Table IX) all were significantly less effective.

Replacement of the aralkoxy group with aryloxyalkoxy in these compounds (Table IV) resulted in a general enhancement of activity while substitution of the N-aralkyl group with aryloxyalkyl (Table III) usually gave compounds of superior serum cholesterol lowering activity.

Experimental Section ${ }^{13}$

m-Trifluoromethylbenzyl Carbethoxyhydroxamate (18, Reaction 1).-A sodium ethoxide solution was prepared from 6.9 g of sodium and 500 ml of anhydrous ethanol. N-Hydroxyurethan ($31.5 \mathrm{~g}, 0.3$ mole) was added to this solution at room temperature. m-Trifluoromethylbenzyl bromide ($71.7 \mathrm{~g}, 0.3$ mole) was then added at such a rate that the temperature did not exceed 30°. The mixture was stirred for 3 hr at room temperature and most of the ethanol was removed by distillation. The residue was diluted with water and extracted with ether. The dried ether solution was evaporated leaving a residue which solidified on standing. Recrystallization from CCl_{4}-hexane furnished the desired carbethoxyhydroxamate ($38.2 \mathrm{~g}, 48 \%$).
o-Methylbenzyl \mathbf{N}-(o-Methylbenzyl)carbethoxyhydroxamate (65, Reaction 2).-A solution of N-hydroxyurethan ($28.4 \mathrm{~g}, 0.27$ mole) in 150 ml of ethanol was cooled to 0°. Ethanolic KOH $(250 \mathrm{ml}, 2.16 \mathrm{~N})$ was added at that temperature and α-bromo-oxylene ($100 \mathrm{~g}, 0.54$ mole) then was added at such a rate that the temperature did not exceed 30°. The mixture was stirred for 2 hr at room temperature and most of the ethanol was removed by distillation. The cooled residue was diluted with ether and the inorganic salts were separated by filtration. The ether solution was washed (dilute $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$) until neutral. Distillation of the dried solution afforded the desired carbethoxyhydroxamate ($59.4 \mathrm{~g}, 70 \%$), $n^{25} \mathrm{D} 1.5401$.
γ-Phenylpropyl N-Benzylcarbethoxyhydroxamate (55, Reaction 9).- γ-Phenylpropyl carbethoxy hydroxamate ($9,80.3 \mathrm{~g}$, 0.36 mole) was added at room temperature to a solution of sodium ethoxide (from 8.3 g of Na and 350 ml of ethanol). The mixture was stirred and benzyl bromide ($61.5 \mathrm{~g}, 0.36 \mathrm{~mole}$) was added dropwise at ca. 30°. Stirring was continued for 3 hr at room temperature, then the bulk of the ethanol was removed by distillation. The residue was diluted with water and the oil which separated was extracted with ether. This extract was washed (dilute $\sqrt{\mathrm{NaOH}}$, dilute $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$) until neutral. Distillation of the

[^3]dried solution yielded $103 \mathrm{~g}(77 \%)$ of the desired carbethoxyhydroxamate.

N-Benzylcarbethoxyhydroxamic acid was obtained by the reaction of ethyl chloroformate and N-benzylhydroxylamine, following the procedure described by Zinner ${ }^{12}$ for the preparation of ethyl carbethoxyhydroxamic acid. It was obtained as a colorless liquid, bp $114-115^{\circ}(0.05 \mathrm{~mm}), n^{25 \mathrm{D}} 1.5236$.

Anal. Caled for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3}: \mathrm{C}, 61.51 ; \mathrm{H}, 6.66 ; \mathrm{N}, 7.17$. Found: C, 61.67; H, 6.42; N, 7.35.
m-Methylbenzyl N-Benzylcarbethoxyhydroxamate (62, Reaction 10).-N-Benzylearbethoxyhydroxamic acid (97.6 g, 0.5 mole) was added to a sodium ethoxide solution (from 11.5 g of Na and 500 ml of ethanol). α-Bromo-m-xylene ($92.5 \mathrm{~g}, 0.5$ mole) was added with stirring and intermittent cooling to keep the temperature below 30°. The mixture was stirred at ca. 60° until the FeCl_{3} test was negative (about 4 hr). Most of the ethanol was then removed and the residue was diluted with water. The organic layer was extracted into ether and the ether solution was washed (dilute NaOH , dilute $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$) until neutral. Purification was effected by distillation, yield $118 \mathrm{~g}(79 \%)$.
m-Trifluoromethylbenzyloxyamine Hydrochloride (31, Reaction 3).-A solution of 18 ($19.7 \mathrm{~g}, 0.075$ mole) and $\mathrm{NaOH}(6.0 \mathrm{~g}$, 0.15 mole) in 300 ml of 50% ethanol was heated under reflux for 1 hr . The ethanol was then removed by distillation and the cooled residue was extracted with ether. The extract was dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and 15 ml of 5 N ethanolic HCl was added carefully. The dense precipitate which formed was separated and recrystallized from ethanol-ether to give $14.4 \mathrm{~g}(85 \%)$ of the amine hydrochloride.
\mathbf{N}-(p-Chlorobenzyl) p-chlorobenzyloxyamine (110, Reaction 4). -A solution of p-chlorobenzyl N -(p-chlorobenzyl)carbethox:hydroxamate ($80,16.3 \mathrm{~g}, 0.045 \mathrm{~mole}$) and of $\mathrm{NaOH}(5.5 \mathrm{~g}, 0.135$ mole) in 200 ml of 50% ethanol was refluxed for 1 hr . The ethanol was removed by distillation. The residue separated a solid upon cooling that was dissolved in ether. This solution was washed with water and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the ether yielded a solid which was purified by crystallization from 25 ml of methanol to give $7.5 \mathrm{~g}(58 \%)$ of the desired hydroxylamine.
m-Methoxybenzyloxyamine (29, Reactions 1 and 3).-A solution containing N-hydroxyurethan ($17.7 \mathrm{~g}, 0.17 \mathrm{~mole}$) and m methoxybenzyl chloride ($26.7 \mathrm{~g}, 0.17 \mathrm{~mole}$) in 12 j ml of ethanol was heated to reflux. Alcoholic $\mathrm{KOH}(50 \mathrm{ml}, 3.4 \mathrm{~N}$) was then added dropwise over a period of 2 hr . Heating was continued for another 2 hr after which 132 ml of 20% aqueous KOH was added. The mixture was refluxed for 3 additional hr and the bulk of the ethanol was removed by distillation. The residue was diluted with water and extracted with ether. This solution was washed with an excess of dilute HCl and the acid extract was made alkaline with NaOH . The oil which separated was extracted with ether. Distillation of the dried extract yielded $12.2 \mathrm{~g}(47 \%)$ of m-methoxybenzyloxyamine.

Benzyl Carbo-n-hexoxyhydroxamate (5, Reaction 5).-A solution of benzyloxyamine ($49.2 \mathrm{~g}, 0.4$ mole) in 250 ml of ether
was added dropwise with stiming la n-hexyl chloroformale ($33 \mathrm{~g}, 0.2$ nole) in 1 l . of ether. The temperature was kept at 20° by intermittent cooling. A dense precipitate of benzylosyamine hydrochloride appeared imnediately and was removed by filtration. The filtrate was evaporated to a thick oll which solidified ant standing. Recrvstallization from methamol water (4:1) afforded the desired hyolroxamate ester ($83 \mathrm{~g}, \mathbf{6 6 \%}$).
o-Methylbenzyl \mathbf{N}-(o-Methylbenzyl)carbomethoxyhydroxamate (64, Reaction 6)-- Methyl chlorofomate (14.2 q. 0.15 mole) wis added dropwise with good stiming to th solation of N -(a-

 tomperatme was kept below 30° by intomitent eooling. The
 were separated, and the ether solthon wats washed repeatedly with dilute IICl. Evaporation of the dried ether left an wity rosidne. Atrempted distillation of this oil in conventional efuipment led to signs of decomposition at a heat temperatme of $140^{\circ}(0.2 \mathrm{~mm})$. The material was purified by short-path distillation at 0.0n) man and $100-120^{\circ}$ bath temperature. The
 wil ($37.7 \mathrm{~g}, 84 / \mathrm{c})$.

Benzyl Octanohydroxamate (40, Reaction 7).-- ()ctunoyl charide ($19.6 \mathrm{~g}, 0.12 \mathrm{~mole}$ was alded dropwise with stiming
 ether. The mixtme was stimed an rom temperatme for 2 hr and the precipitate of henzyloxyamine hydrochlaride was removed by filmation. The filtare was washed with water and dried $\left(\mathrm{Nans}_{4}\right)$. Solvent removal and distillamotiolded 17.9 g (60) $\%$) of 40.

Benzyl N-Benzylformhydroxamate (111, Reaction 8).-- Fomm-
 oxy:mine hydrochloride ($83, \mathrm{f} \mathrm{g}$) was aded will stiming in five portions at intervals such that the previons portion was practically dissolved before the next addition was made. The mixture was heated for 1 hr and then cooled to room temperathre. The product separated as a lump. Water was adeled and the mixture was extracted with ether. Evaporation of the ether solntion prodnced a solid which was reerystallized from 30 ml of methanol to give $9.0 \mathrm{~g}\left(600^{\circ}\right)$ of purifiod product.

Benzyl N-Benzylacetohydroxamate 1112, Reaction 8)...... Aceryl chloride ($38.5 \mathrm{~g}, \mathrm{~g}, 5 \mathrm{~mole}$) was added slowly with gom stirring to N゙-benzylbenzyloxymine ($213 \mathrm{~g}, \mathrm{l}, 0$ mole) in 1.5 g . of ether. A pregipitale separated immediately. The mixture was heated under reflux for 1 ha and the N-bentrolbemy loxymmine hydrochloride ($119.7 \mathrm{~g}, 96 \%$) was semperter. The filtrate was evaporated and the solid residne which remained was dissolved iat 200) mol of ether. Cinefnl addition of hexance 11.4 l .) precipi-
 was identical in every respect (melting point, mixtme melting
point, infared spectimi with that obrained following the proce (lure of Cooler, at al. ${ }^{10}$ for the benzylation of a cethydroxamie acid.

N-Benzyl-N-benzyloxy-N'-ethylurea (187, Reaction 12a)... A कolution of ethyl isocymate ($10.7 \mathrm{~g}, 0.15$ mole) int 30 ml of anhydrous eiker was added droporise to a molution of N.bentale
 The reaction mixtme was reftnsed fon? hr and then distilled In remove the ether. The reviche which solidified an cooling was reerystallized from perolemm ether to give 2^{-}g ol prodnd. The melting peind and amblieal dat: for this componad that for N-bobyloxy-N'edhylare (182), propared by the sume method, are smmarized in Trable IS.

N -(p-Chlorobenzyloxy)-N’-acetylurea (184, Reaction 11).

 whered at rom lemperature for 2 lat and then filtered into a flask

 room temperatare for 1 ln , cooled, antel filtered. The whid was recrystallized from 263 ml of methand, yielding 9.2 g of puratiet. The melting point and analytical data for this componad and for the other ureder prepared by this procedure are included in Table L .

N, N'-Dibenzyl-N,N'-dibenzyloxyurea (189, Reaction 12b). S.Benarlbenarloxymine ($01 . \mathrm{S}$ g. 0.43 mole) was added dropwise with cooling atud stiming to a solation of phosene ($10 . \overline{\mathrm{g}} \mathrm{g}$. 0. 10 K mole in 1 I . of foluene. The mixume was filtered and the olid was what with 400 ml of tolnene and 400 ml of ether. The filtrates were emnlined and distilled to al vapor lemperanme of $100^{\circ}(10.05 \mathrm{~mm})$. The remaning oil solidified after standing at roon temperatare for 1 month. It was funher purified by covstallizing from 130 ml of ethanol 10 give 29 of of podnct.
4-Aminobenzyl Carbethoxyhydroxamate Hydrochloride (24). A solntion of 4 -nitmbenzal cabethaxyhydwamate $(\mathbf{2 3}, 24 \mathrm{~g}$, O. 1 mole) in 130 ml of ethatol was hydrogenated over Pt black in a Pam shaker. The hydrogen uptake ceased after 0.1 mole of Hz had been absomed. The filtered sohntion was dilated with ether and expers ethamolie IICl was added. A precipitate fomed nutl was somated. Recrestallization of the precipitate iron ethmol fimbined the desibed esiel in the form of its hydrocharidesalt (1s.2g. $7 f^{\prime}$,)
Acknowledgment.--The authors are indebted to Dr. S. Margolin and to Dr. J. F. Douglas for making the results of the hiological cvaluations available. Assistance hy Dr. L.s. Powell, Messis. T. Cebalo, M. Meyer, and F . J. Stiefel in the preparation of : number of the compounds dessribed in this paper is also acknowledged.

[^0]: (1) 1. E:. Volcani and F. E. Snell. J. Biol. Chem., 174, 893 (1048).
 (2) (a) E. A. Kuell. F. J. Wolf, N. R. Trenner. R. D. Peck. F. Howe, 13. D. Hunnewell, G. Downing. E. Newsteat, and K. Folkers, J. Am. Chem. soc., 77, 2344 (1955) ; (b) P. H. Hidy. E. B. Hodse. V. V. Young. R. L. Harned. G. A. Brewer. W. F. Philtips, V. F. Runge. IA. E. Stavely. A. Pollland, II. Boaz, and H. R. Slllivan, ibid.. 77, 2346 (19in).
 (3) (a) For a comprelensive review of the literature on O-pubstituled wxymines. see A. O. Ivespää and A. Marxer, Chimía (Aarail), 18, 1 (196t): (1) P. Mamalis, L. Jeffries, S. A. Price, M. J. Rix, and I. J. Outred, J, Ho, Chen.. 8. 684 (1965). have simmarized the literature deating wilb his biohogical and pharmachogical atrivitios of these compound.

[^1]: (4) (a) The effen of one of these componits, henzyl N-henzytearbeti)oxyhydroxamate, on experimental atherosclerosis and hypercholesteremia has been described: see F. M. Berger. J. F. Douglas. D. J. Ludwig. and S. Margolin. Proc. Soc. Fixpfl. Biol. Mch.. 114, 337 (1963): J. F. Doaghas, 13. J. L.udwig, \&. Margolin, and 1. M. Herser, J. Atheroschlerosis Res.. 6, 30
 F. M. Berger and 13. J. 1mdwis, C. S. Patents 3,245,878 (April 19. 19e(i) 3.2:8,583 (Oct 11, 1966), 3.280,171 (Oct 18. 1966).
 (5) A. T. Fuller and 11. King. J. Chem, sue., 963 (15t-7).
 (6) (a) L. W. Jones. Am. Chem. J. 20, 1 (1848): (1) L. W. . Wemes ant

[^2]: (7) (a) R. T. Major and K. W. Ohly. J. Med. Pharm. Chem., 4, 51 (1961); (b) P. Mamalis, J. Green. D. J. Outred, and M. J. Rix, J. Chem. Soc., 1829 (1965): (c) B. J. R. Nicolaus, G. Pagani, and E. Testa, Helv. Chim. Acta, 45, 1381 (1962).
 (8) A. Galat and C. Elion, J. Am. Chem. Soc., 65, 1566 (1943)

[^3]: (13) The compound numbers refer to the numbers in Tables I-IX. The reaction numbers are those used in Chart I and correspond to the method numbers included in the tables. Melting points are corrected and were obtained using a Thomas-Hoover apparatus. Boiling points represent average values. Microanalyses are by Galbraith Iaboratories, Knoxville, Tenn.

